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Such a u-1,2-peroxo structure is analogous to that crystallo-
graphically characterized for [Co,(BPMP)(OAc)(O,)1%* ¥ and
proposed for the species derived from reacting [Fe,(5-Me-
HXTA)(OAc),]” with H,0,.1¢ At present, the available data
do not allow us to exclude a u-1,1-peroxo structure, but ongoing
resonance Raman and EXAFS studies should aid in distinguishing
between these two possibilities.

Of the four diferrous models for the iron~oxo proteins, 1 is the
only complex that has been shown to bind O,. The availability
of exogenous ligand coordination sites on both iron atoms in 1
may be an important factor in promoting dioxygen binding. 1
may thus serve as a model for RRB2, in as much as RRB2 has
recently been shown to have a (u-oxo)(u-carboxylato)diiron(III)
core.'” We are currently investigating the reactivity of the 1-O,
adduct when it decomposes at higher temperatures.
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We explore the reactivity of gas-phase, neutral 3d-series
transition-metal atoms (M) with hydrocarbons. While certain
transition-metal cations (M*) are aggressive chemicals that ac-
tivate C-H and C—C bonds of alkanes,* the gas-phase chemistry
of neutral transition-metal atoms remains virtually unexplored.**
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Cryogenic matrix isolation spectroscopy®™® and ab initio electronic
structure calculations®!! on neutral metal atom complexes
M-C,H, provide another context for this work.

A hollow cathode discharge produces neutral metal atoms in
a fast-flow reactor with He buffer gas. Laser-induced fluorescence
(LIF) provides state-specific detection of the metal atom number
density. From the linear decay of In [M] vs hydrocarbon number
density, we extract effective bimolecular rate constants® at 300
K in 0.8 Torr He. We studied the reactivity of Fe(d%s2,’D),
Co(d’s2,4F), Ni(d%2,3F), Ni(d%,3D), and Cu(d!%,2S) with the
linear hydrocarbons propane, n-butane, ethene, propene, and
1-butene. In comparison with the corresponding cations, these
neutral atoms are remarkably inert. We observe no reactions with
propane or n-butane to our detection limit (implying k < 10714
cms1). With the exception of Co + 1-butene, which is very slow
(k =9 X 1071* cm’s™1), Fe, Co, and Cu show no reaction with
ethene, propene, or 1-butene.

In striking contrast, Ni reacts slowly with ethene (5.0 X 10713
cm?s™"), moderately with propene-A¢ (1.1 X 107! cm3s™!) and
with propene-dg (2.1 X 107! cm?s7!), and rapidly with 1-butene
(1.4 X 1071° cm3s71), Rate constants are accurate to £25% and
precise to £10%. The two low-energy terms!? of Ni (d®23F and
d%,’D) exhibit identical kinetics, suggesting rapid collisional in-
terconversion in He. Ni reacts with C,H, in 1 of 500 hard-spheres
collisions, with C3H¢ in 1 of 25 collisions, and with 1-butene in
1 of 2 collisions.!?

Termolecular stabilization of Ni—alkene complexes probably
dominates the measured rate constants, although a contribution
from bimolecular H, or CH, elimination reactions (analogous to
single-collision M* chemistry)?? is possible. H-atom abstraction
by Ni is highly endothermic and therefore ruled out. The rapid
increase of the Ni + alkene rate constant with alkene size is
consistent with a statistical model'4 of hot [Ni(alkene)]* complex
lifetimes. The observed inverse isotope effect for the Ni + propene
reaction, k(C;Dq) = 2k(C;Hj), also points to termolecular sta-
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bilization. The density of vibrational states of the deuterated
complex will be larger, while the Ni-C;H¢ and Ni-C,;D4 bond
energies will be very similar, so we would expect longer lifetimes
(and greater stabilization efficiency) for the Ni + C;D, reaction
in a termolecular mechanism.

In an attempt to clarify the nature of the Ni + alkene products,
we gently focused excimer laser pulses at 308 and 248 nm
(two-photon energy of 8.1 and 10.0 V) downstream in the flow
tube and analyzed the resulting cations in a quadrupole mass
spectrometer. The only photoion observed is Ni*. It is plausible
that collisionally stabilized, w-bonded Ni-alkene complexes
photodissociate to Ni + alkene and that subsequent two-photon
ionization of Ni produces the observed Ni*.

The ground-state configurations!? of Fe, Co, and Ni are 3d™24s2,
The 4s? occupancy and the large spatial extent of 4s relative to
3d give these atoms closed-shell character at long range. Ac-
cordingly, ab initio calculations!®!! find that M(d*%?) + C,H,
asymptotes produce only repulsive potentials. Substantial M—C,H,
binding arises only from excited-state d*!s asymptotes. In Fe,
Co, and Ni, the lowest energy high-spin d™!s levels lie at excitation
energies of 20, 10, and 0.6 kcal/mol, respectively. The lowest
energy low-spin d™s levels lie at 34, 21, and 10 kcal/mol.!2

The challenge for d*?s2 reactants is to reach sufficiently short
M-alkene approach distances to access attractive d*s potential
surfaces before deflecting off the repulsive wall of the d*2?
surface. The attractive surfaces will often have different spin
multiplicity from the reactants.!®! The avoided intersection
between the repulsive d"%s? surface and the attractive d™'s surface
can produce a barrier on the lowest energy adiabatic surface whose
height should be roughly proportional to the atomic excitation
energy from d"™%s? to d*'s. Thus the strength of M-alkene binding
and the energy of the surface intersections combine to determine
the gas-phase reactivity.

Measurement of gas-phase rate constants at 300 K with
well-defined initial metal atom states can provide quantitative
experimental insights into gas-phase M-alkene interactions.
Assuming Arrhenius behavior k(T) = ky, exp(-E/kyT) with
preexponential factor equal to the hard-spheres collision rate k
(the largest plausible value),!* we can convert the measured re-
action probabilities P = k(300 K)/ky, to upper bounds E,, on
the activation energy E using the equation E,,,, = —kgT In P.5®
In addition, those reactions that occur at measurable rate exhibit
exponential decay of the M reactant over at least one decade. In
the termolecular stabilization mechanism, this implies at least
10-15 kcal/mol of M-alkene binding energy relative to ground-
state reactants, depending on the entropy change at 300 K and
on the alkene number density required to effect the 10-fold decay
of M atom density.> No reaction (k < 107 cms™!) implies either
an activation energy in excess of 6 kcal/mol or a M-alkene binding
energy less than 10-15 kcal/mol relative to ground-state reactants,
or both.

Since Fe and Co ground states are unreactive, we conclude that
they never reach the potential wells arising from d™s asymptotes
or that the wells are not sufficiently deep. This is consistent with
the minor shifts between vibrational frequencies of C,H, and
FeC,H, in matrix IR spectra® and with ab initio calculations!®
that find a bound Fe-C,H, complex lying 6 kcal/mol above
Fe(d%?2,°D) + C,H,. Since the Cu(d'%,S) ground state is well
isolated from excited states, we expect no surface intersections
(no potential barrier) for Cu + alkene. The absence of measurable
Cu + alkene reaction implies binding energies less than 10-15
kcal /mol, consistent with a recent calculated Cu-C,H, binding
energy of 8 kcal/mol obtained with core pseudopotentials.!!

NiC,H, is observed in cryogenic matrices;’ the C,H, vibrational
frequencies are more strongly perturbed in NiC,H, than in
FeC,H,. Only the repulsive Ni-C,H, surfaces arise from the
Ni(d®?3F) ground state. Early ab initio work® found a triplet
NiC,H, ground state (*A,) from Ni(d%,D). Recent calcula-
tions'® with more extensive basis sets find the same triplet surface
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to be repulsive. Ni(d%,'D) + C,H, gives an attractive singlet
surface ('A,) bound by 10 kcal/mol relative to ground-state Ni
+ C,H,.1?

The observed extent of the Ni(d%,3D) + alkene reactions in-
dicates Ni-alkene binding energies in excess of 10~15 kcal/mol,
consistent with the recent Ni-C,H calculations.'® Apparently
Ni(d%,’D) + C,H, collisions at 300 K readily access the 'A,;
potential well, The reaction efficiencies indicate very small barriers
on the adiabatic surface which has >A, character at long range
and 'A, character at short range. Reaction probabilities of !/5qq
for Ni + ethene, !/, for Ni + propene, and !/, for Ni + 1-butene
imply activation energies not larger than 3.5, 1.9, and 0.4 kcal /mol,
respectively. For Ni + C,H,, the calculations!® find the crossing
point between the A, surface and the !A,; surface to lie ~8
kcal/mol above Ni(d%,?D) + C,H,, which is probably an over-
estimate.
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We provided evidence recently that the reactive intermediate
[Cp*,Zr==0] is generated at 160 °C by a-elimination of benzene
from Cp*,Zr(Ph)(OH).!'? The oxo intermediate reacts with
selected alkynes, but at this elevated temperature the materials
isolated presumably result from rearrangement of the initially
formed alkyne addition products. We now report a novel room-
temperature route to [Cp*,Zr==0).3 This reaction allows isolation
of oxametallacycles that result from initial reaction of the oxo
complex with alkynes and provides a means of utilizing alkyl- as
well as aryl-substituted acetylenes in the reaction. In addition,
we have found a mild route to the analogous sulfido complex
[Cp*,Zr=S]. Like its oxo analogue, this material undergoes
cycloaddition reactions with alkynes and nitriles; in this case, we
have also been able to trap the reactive species with dative ligands.

Treatment of Cp*,Zr(OH)(CI) (1)* with 1 equiv of AgOS-
0,CF, produces Cp*,Zr(OH)(OSO,CF;) (2) in nearly quanti-
tative yield by '"H NMR (Scheme [).> Deprotonation of 2 with
the hindered base KN(Si(CHj,);), leads to the successful gen-
eration of [Cp*,Zr==0] as judged by its subsequent trapping with
various alkynes and nitriles. A critical example involves di-
phenylacetylene. The metallacycle complex 3a was prepared
recently by Hillhouse upon treatment of the zirconocene di-
phenylacetylene complex Cp*,Zr(PhCCPh) with N;O.5 We were
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